Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,6-Di-4-pyridyl-1,4-dihydro-1,2,4,5tetrazine

Hai Wang, ${ }^{\text {a }}$ Hua-Ze Dong, ${ }^{\text {b }}$ Ning Lu ${ }^{\text {b }}$ and Hai-Bin Zhu ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China
Correspondence e-mail: cep02chl@yahoo.cn

Received 26 May 2008; accepted 10 June 2008

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.051 ; w R$ factor $=0.128$; data-to-parameter ratio $=12.8$.

The molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}$, which is Vshaped due to the boat conformation of the dihydrotetrazine ring, has crystallographic C_{2} symmetry. The dihedral angle between the planes of the two pyridine rings is $31.57(3)^{\circ}$. Molecules are linked by weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming a two-dimensional polymeric structure.

Related literature

For related structures, see: Bradford et al. (2004); Caira et al. (1976); Liou et al. (1996); Zachara et al. (2004); Rao \& Hu (2005). For related literature on tetrazines, see: Sauer (1996).

Experimental

Crystal data

[^0]\[

$$
\begin{aligned}
& a=11.2862(18) \AA \\
& b=14.481(2) \AA \\
& c=6.8864(12) \AA
\end{aligned}
$$
\]

$V=1125.4(3) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Bruker SMART CCD area-detector 4214 measured reflections diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.955, T_{\text {max }}=0.991$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.128$
$S=1.08$
1105 reflections
86 parameters
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.50 \times 0.10 \times 0.10 \mathrm{~mm}$ 1105 independent reflections 938 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{~N}^{\mathrm{i}}$	$0.83(2)$	$2.35(2)$	$3.142(2)$	$159.8(18)$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{~N}^{\mathrm{ii}}$	0.93	2.55	$3.312(2)$	139
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~N} 1^{\mathrm{iii}}$	0.93	2.55	$3.475(3)$	171
Symmetry codes:	(i)	$-x+1, y+\frac{1}{2},-z+\frac{1}{2} ;$	(ii)	$-x+1, y-\frac{1}{2},-z+\frac{1}{2} ;$
2 (iii) $x-y,-z+\frac{1}{2}$.				

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

[^1]
References

Bradford, F. E., Connor, L. P., Kilner, C. A. \& Halcrow, M. A. (2004). Polyhedron, 23, 2141-2151.
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Caira, M. R., Giles, R. G. F., Nassimbeni, L. R., Sheldrick, G. M. \& Hazell, R. G. (1976). Acta Cryst. B32, 1467-1469.

Liou, L.-S., Chen, P.-S., Sun, C.-H. \& Wang, J.-C. (1996). Acta Cryst. C52, 18411843.

Rao, G.-W. \& Hu, W.-X. (2005). Acta Cryst. E61, o3664-o3665.
Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zachara, J., Madura, I. \& Włostowski, M. (2004). Acta Cryst. C60, o57-o59.

supplementary materials

Acta Cryst. (2008). E64, o1269 [doi:10.1107/S160053680801742X]

3,6-Di-4-pyridyl-1,4-dihydro-1,2,4,5-tetrazine

H. Wang, H.-Z. Dong, N. Lu and H.-B. Zhu

Comment

Tetrazine derivatives have been widely used in pesticides and herbicides as they have a high potential for biological activity and possess a wide range of antiviral and antitumor properties (Sauer, 1996). Herein, we report the crystal structure of a new tetrazine derivative, 3,6-di(pyridin-4-yl)-1,4-dihydro-1,2,4,5-tetrazine.

The molecule of the title compound, which has a crystallographic C_{2} symmetry is shown in Fig. 1. The title compound can be regarded as a V-shaped tetrazine with the dihedral angle between the pyridine rings of 31.57 (3) ${ }^{\circ}$. In the crystalline state, each molecule is connected to four adjacent molecules to form a two-dimensional $(4,4)$ hydrogen-bonding network by the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 2.). Crystal structures of several other tetrazine derivatives with a similar shape have been reported (Bradford et al., 2004; Caira et al., 1976; Liou et al., 1996; Zachara et al., 2004; Rao \& Hu, 2005).

Experimental

A mixture of 4-cyanopyridine $(0.416 \mathrm{~g}, 4.0 \mathrm{mmol}), 80 \%$ hydrazine hydrate $(5 \mathrm{ml}), \mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(0.238 \mathrm{~g}, 1.0 \mathrm{mmol})$ and 95% ethanol (4 ml) was heated in a $15-\mathrm{mL}$ Teflon-lined autoclave at $120^{\circ} \mathrm{C}$ deg for 3 days, followed by slow cooling $\left(5^{\circ} / \mathrm{h}\right.$ deg) to room temperature. The resulting mixture was washed with 95% ethanol, and red block crystals were collected and dried in air [yield $3.0 \%(14.3 \mathrm{mg})$ based on 4-cyanopyridine].

Refinement

H atoms bonded to N atoms were located in an electron-density difference map and refined isotropically without any restraints. Other H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The molecular structure of the title compound with 30% displacement ellipsoids. Symmetry code for the atoms designated with $\mathrm{A}:-1 / 2-x, 1 / 2-y, z$.

Fig. 2. A two-dimensional $(4,4)$ hydrogen-bond network of the title compound viewed along the c axis

supplementary materials

3,6-Di-4-pyridyl-1,4-dihydro-1,2,4,5-tetrazine

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}$
$M_{r}=238.26$
Orthorhombic, Pccn
Hall symbol: -P 2ab 2ac
$a=11.2862(18) \AA$
$b=14.481$ (2) \AA
$c=6.8864(12) \AA$
$V=1125.4(3) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 0 pixels mm^{-1}
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.955, T_{\text {max }}=0.991$
4214 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.128$
$S=1.08$
1105 reflections
86 parameters
Primary atom site location: structure-invariant direct methods
$F_{000}=496$
$D_{\mathrm{x}}=1.406 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 820 reflections
$\theta=2.5-28.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, red
$0.50 \times 0.10 \times 0.10 \mathrm{~mm}$

1105 independent reflections
938 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=26.0^{\circ}$
$\theta_{\text {min }}=2.8^{\circ}$
$h=-13 \rightarrow 10$
$k=-17 \rightarrow 17$
$l=-3 \rightarrow 8$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0618 P)^{2}+0.3052 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.20$ e \AA^{-3}
$\Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.56160(17)$	$0.17370(13)$	$0.1811(4)$	$0.0589(7)$
H1A	0.5769	0.2351	0.1500	0.071^{*}
C2	$0.65246(19)$	$0.11530(16)$	$0.2327(4)$	$0.0683(8)$
H2A	0.7286	0.1397	0.2370	0.082^{*}
C3	$0.52968(17)$	$-0.00510(13)$	$0.2686(3)$	$0.0463(5)$
H3A	0.5172	-0.0671	0.2971	0.056^{*}
C4	$0.43215(16)$	$0.04780(12)$	$0.2202(3)$	$0.0390(5)$
H4A	0.3571	0.0214	0.2176	0.047^{*}
C5	$0.44678(15)$	$0.13961(11)$	$0.1762(3)$	$0.0322(4)$
C6	$0.34693(13)$	$0.20078(11)$	$0.1238(2)$	$0.0296(4)$
N1	$0.63928(15)$	$0.02634(11)$	$0.2770(3)$	$0.0526(5)$
N2	$0.36287(11)$	$0.28776(9)$	$0.1283(2)$	$0.0331(4)$
N3	$0.26087(12)$	$0.33789(10)$	$0.0671(2)$	$0.0332(4)$
H3B	$0.2708(17)$	$0.3931(14)$	$0.097(3)$	$0.047(6)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0310(11)$	$0.0379(11)$	$0.108(2)$	$-0.0006(8)$	$-0.0039(11)$	$0.0119(11)$
C2	$0.0282(11)$	$0.0536(13)$	$0.123(2)$	$0.0004(9)$	$-0.0073(12)$	$0.0094(14)$
C3	$0.0396(13)$	$0.0355(10)$	$0.0639(14)$	$0.0077(8)$	$-0.0012(9)$	$0.0042(9)$
C4	$0.0294(10)$	$0.0324(9)$	$0.0553(12)$	$0.0011(7)$	$-0.0008(8)$	$0.0023(8)$
C5	$0.0273(9)$	$0.0314(9)$	$0.0379(9)$	$0.0025(7)$	$0.0029(7)$	$-0.0026(7)$
C6	$0.0255(9)$	$0.0272(8)$	$0.0360(9)$	$-0.0013(6)$	$0.0027(7)$	$-0.0009(7)$
N1	$0.0357(10)$	$0.0463(10)$	$0.0756(13)$	$0.0111(7)$	$-0.0021(8)$	$0.0028(9)$
N2	$0.0238(8)$	$0.0283(7)$	$0.0471(9)$	$0.0007(6)$	$0.0036(6)$	$0.0006(6)$
N3	$0.0270(8)$	$0.0239(7)$	$0.0487(9)$	$0.0011(6)$	$0.0019(6)$	$0.0030(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 2$	$1.376(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.374(2)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.387(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9300	$\mathrm{C} 5-\mathrm{C} 6$	$1.478(2)$

supplementary materials

$\mathrm{C} 2-\mathrm{N} 1$	$1.332(3)$	$\mathrm{C} 6-\mathrm{N} 2$	$1.273(2)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	$\mathrm{C} 6-\mathrm{N} 3^{\mathrm{i}}$	$1.395(2)$
$\mathrm{C} 3-\mathrm{N} 1$	$1.319(2)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.4249(18)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.382(3)$	$\mathrm{N} 3-\mathrm{C}^{\mathrm{i}}$	$1.395(2)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9300	$\mathrm{~N} 3-\mathrm{H} 3 \mathrm{~B}$	$0.83(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$118.94(18)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	$116.82(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	120.5	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.84(15)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	120.5	$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 6$	$120.33(16)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$124.8(2)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 3^{\mathrm{i}}$	$121.83(14)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	117.6	$\mathrm{~N} 2-\mathrm{C} 6-\mathrm{C} 5$	$118.64(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	117.6	$\mathrm{~N} 3-\mathrm{C} 6-\mathrm{C} 5$	$119.51(14)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$124.48(18)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$115.36(17)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	117.8	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{N} 3$	$112.51(13)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	117.8	$\mathrm{C} 6-\mathrm{N} 3-\mathrm{N} 2$	$114.66(12)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.61(17)$	$\mathrm{C} 6-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	$115.7(14)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	$\mathrm{~N} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	$107.9(14)$	
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$			

Symmetry codes: (i) $-x+1 / 2,-y+1 / 2, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~N} 1^{\text {ii }}$	$0.83(2)$	$2.35(2)$	$3.142(2)$	$159.8(18)$
$\mathrm{C} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{~N} 2^{\text {iii }}$	0.93	2.55	$3.312(2)$	139
$\mathrm{C} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{~N} 1^{\text {iv }}$	0.93	2.55	$3.475(3)$	171
Symmetry codes: (ii) $-x+1, y+1 / 2,-z+1 / 2 ;($ (iii $)-x+1, y-1 / 2,-z+1 / 2 ;($ iv $) x-1 / 2,-y,-z+1 / 2$.				

Fig. 1

Fig. 2

[^0]: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{6}$
 $M_{r}=238.26$
 Orthorhombic, Pccn

[^1]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2149).

